
Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1261

Validation of Internet Application: Study,
Analysis and Evaluation

Dinesh Kumar
Asst. Professor,Shri Siddhi Vinayak Institute of Technology, Bareilly,

 Email: mail2dinesh.gm@gmail.com

--ABSTRACT---
Today, testing applications for Internet (web sites and other applications) is being verified using proprietary test
solutions. The Internet Security became a very important and complex field of researches in our present time,
especially if we apply this to the discussion of Internet protocols as basic interfaces for exchanging sensitive data
over the Internet and finding appropriate and trustworthy algorithms for their validation. Test Competence
Centre at Ericsson AB has expertise on testing telecom applications using TTCN-2 and TTCN-3 notations. These
notations have lot of potential and are being used for testing in various areas. So far, not much work has been
done on using TTCN notations for testing Internet application. This thesis was a step through which the
capabilities/possibilities of the TTCN notation (in Web testing) could be determined. This paper presents
investigation results of the 3 different test Technologies/tools (TTCN-2, TTCN-3 and a proprietary free software,
PureTest) to see which one is the best for testing Internet Applications and what are the drawbacks/benefits each
technology has.

Keywords - validation, web testing, tools
--
Date of Submission: August 26, 2011 Revised: October 12, 2011 Date of Acceptance: October 28, 2011
--

I. INTRODUCTION

An ever increasing number of users are becoming
dependent on Internet services, such as search engines, e-
mail, and music jukeboxes for their work and leisure.
These services typically comprise complex conglomerates
of distributed hardware, software, and databases. Thus,
ensuring high service availability is challenging ([1], [2]).
Our work seeks to alleviate one important source of
service failures: operator mistakes. Several studies have
shown that mistakes are a significant source of
unavailability [1]. [5]. For instance, Oppenheimer et al. [1]
show that mistakes were responsible for 19-36% of
failures, and, for 2 out of 3 services, were the dominant
source of failures and the largest contributor to time to
repair. Similarly, Oliveira et al. [5] report that operator
mistakes are responsible for a large fraction of the
problems in database administration. Both corroborate an
older study of Tandem systems where mistakes were a
dominant reason for outages [3]. In our previous work, we
proposed operator action validation as an approach for
detecting mistakes while hiding them from the service and
its users ([5], [6]). In this approach, a validation
framework creates an isolated extension of the online
service in which operator actions are performed and later
validated. Before the operator acts on a service
component, the component is moved to this extension.
After the operator .If validation succeeds, the system
moves the component back online; otherwise, it alerts the
operator. While this validation strategy can detect and hide
a large class of mistakes, it has three important limitations:

(1) it requires known instances of correct behavior for
comparison; (2) it provides no guidance in pinpointing
mistakes; and (3) it fails to detect latent mistakes. In this
paper, we propose a novel validation strategy, called
model-based validation that addresses these limitations.
Model-based validation calls for service engineers1 to
choose abstract models to describe the systems and
identify incorrect configurations and behaviors. These
models are then used to guide the specification of
assertions to check the correctness of operator actions
without requiring instances of correct behaviors for
comparison. The purpose of the models is to ensure a
systematic and proactive approach to generating
assertions, rather than an ad-hoc/reactive approach that
may leave many mistakes undetected. The use of Internet
has grown over the years. Communication and commerce
through Internet has become a central focus for businesses,
consumers, government and the media. In this
environment it is a must that the web site/ application
performs the way it is supposed to. Therefore thorough
testing is needed before releasing the application/site on
the web. Test Competence Centre at Ericsson AB has, for
many years, testing telecom applications (using TTCN-2
and TTCN-3) as a key area of expertise. So far not much
work has been done on testing Internet applications using
TTCN-2 or TTCN-3 languages. The department wishes to
broaden its knowledge in this area and the Master Thesis
is a step taken in that direction. Testing Internet
Applications is a very complex task and not everything
can be tested in a short duration of time. Therefore, the
supervisor at Ericsson AB identified certain criteria on

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1262

which the thesis work would concentrate. Some of the
identified areas where:

• Testing the websites for broken links
• Identifying all the resources in the web site
• Calculation of Server response time
• Automated website testing

Based on these criteria, search for a third technology
(apart from TTCN-2 & TTCN-3), a proprietary tool, was
conducted during the thesis work and it was found that
Pure Test from Minq Software AB [9] fits the above
criteria more precisely than other tools.
The three technologies are:
TTCN2: This is the current version for TTCN and has
been in use for a long time. This is a stable technology and
aimed for verification of protocol conformance.
TTCN3: The coming technology is TTCN-3 that is
intended to be more user friendly and aimed for a wider
test audience.
The last technology is to use proprietary free software for
verification. This is not a standard technology but may fit
the needs well and is currently the normal way to verify
Internet applications.
The research work was a way to gain/improve knowledge
in areas like:
• Increase Knowledge of TTCN-2 notation
• Usage of TTCN-2 tool for testing
• Developing an adaptation for HTTP testing with TTCN-
3 (C++ design)
• Increase Knowledge of TTCN-3 notation
• Usage of TTCN-3 tool for testing
• Usage of a tool for Internet application for testing
• Selected Internet Application and related protocols.
The Internet Security became a very important and
complex field of researches in our present time, especially
if we apply this to the discussion of Internet protocols as
basic interfaces for exchanging sensitive data over the
Internet and finding appropriate and trustworthy
algorithms for their validation. The core idea of validation
is to verify operator actions under realistic workloads in a
realistic but isolated validation environment [6]. Mistakes
can then be caught before becoming visible to the users.
To achieve realism, the validation environment is hosted
by the online system itself particular, a service with
validation is divided into two slices, an online slice that
hosts online components and a validation slice where
components can be operated on and validated before being
re-integrated into the online slice. The validation slice
contains a testing harness that can be used to load the
components. Validation proceeds as follows.: Suppose an
operator needs to operate on a service component (e.g., to
upgrade its software). Before starting, the operator uses a
script to move the server hosting the component from the
online slice to the validation slice. The operator can now
work on the component without affecting the online
system. After completing her task, the operator surrounds
the masked component with proxies that give the illusion
that the masked component is in a complete system. She
then places a validation workload on the masked
component. Validation compares the replies of the masked

component with those in the trace or those of the online
component. If the replies match (according to content-
similarity and performance criteria), the framework
considers the operator actions to be validated and moves
the hosting server node back online. If validation fails, the
system alerts the operator.
Validation is designed to address a serious issue in
traditional testing (which we call offline testing). Thus,
even with careful testing, operators can make mistakes
when changing or deploying their changes to the online
system. Validation closes this gap between offline testing
and the online system, although the two approaches can be
complementary: validation could be applied as the last
step in a testing/validation process before exposing an
operator action to the online system. We also proposed a
primitive version of model-based validation in [5]. The
expected schema then represents the model against which
the actions are validated. Here, we extend our original
proposal significantly by applying model-based validation
to entire Internet services. The rest of this paper is
organized as follows. In the first part of this paper, we
introduce the concept about validation of internet
applications . The next section includes testing and its
types it also describes classification of web testing and
next section give elaborative description of TTCN.
Remainder of the paper contains evaluation and result
analysis leading to final conclusion

2. TESTING
Software Testing is the process of executing a program or
system with the intent of finding errors. Or, it involves any
activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its
required results. Software is not unlike other physical
processes where inputs are received and outputs are
produced. Where software differs is in the manner in
which it fails. Most physical systems fail in a fixed (and
reasonably small) set of ways. By contrast, software can
fail in many bizarre ways. Detecting all of the different
failure modes for software is generally infeasible. Unlike
most physical systems, most of the defects in software are
design errors, not manufacturing defects. Software does
not suffer from corrosion, wear-and-tear -- generally it will
not change until upgrades, or until obsolescence. So once
the software is shipped, the design defects -- or bugs --
will be buried in and remain latent until activation.
Software testing has three main purposes: verification,
validation, and defect finding.
♦ the verification process confirms that the software meets
its technical specifications. A “specification” is a
description of a function in terms of a measurable output
value given a specific input value under specific
preconditions. A simple specification may be along the
line of “a SQL query retrieving data for a single account
against the multi-month account-summary table must
return these eight fields <list> ordered by month within 3
seconds of submission.”
 ♦ the validation process confirms that the software meets
the business requirements. A simple example of a business

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1263

requirement is “After choosing a branch office name,
information about the branch’s customer account
managers will appear in a new window. The window will
present manager identification and summary information
about each manager’s customer base: <list of data
elements>.” Other requirements provide details on how
the data will be summarized, formatted and displayed.
 ♦ a defect is a variance between the expected and actual
result. The defect’s ultimate source may be traced to a
fault introduced in the specification, design, or
development (coding) phases.

2.1 Testing Process
Many people believe that testing is only what happens
after code or other parts of a system are ready to run. They
assume that testing is only test execution. Thus, they don't
think about testing until they're ready to start executing
tests. Testing is more than tests. The testing process also
involves identifying what to test (test conditions) and how
they'll be tested (designing test cases), building the tests,
executing them and finally, evaluating the results,
checking completion criteria and reporting progress.
First, test what’s important. Focus on the core
functionality—the parts that are critical or popular—
before looking at the ‘nice to have’ features. Concentrate
on the application’s capabilities in common usage
situations before going on to unlikely situations. It’s worth
saying again: focus on what’s important.
The value of software testing is that it goes far beyond
testing the underlying code. It also examines the functional
behavior of the application. It’s entirely possible that the
code is solid but the requirements were inaccurately or
incompletely collected and communicated. It’s entirely
possible that the application can be doing exactly what
we’re telling it to do but we’re not telling it to do the right
thing. A comprehensive testing regime examines all
components associated with the application. Even more,
testing provides an opportunity to validate and verify
things like the assumptions that went into the
requirements, the appropriateness of the systems that the
application is to run on, and the manuals and
documentation that accompany the application. If we leave
test design until the last moment, we won't find the serious
errors in architectural and business logic until the very
end. By that time, it becomes tricky and expensive to track
and fix these faults from the whole system.
2.2 Test Phases
The figure below shows the relationship between different
phases of software developed and testing. The
relationships between the phases are based on the V-
model, as presented by [1].
2.2.1 The V-MODEL of software testing Software
testing is too important to leave to the end of the project,
and the V-Model (fig.1)of testing incorporates testing into
the entire software development life cycle. In a diagram of
the V-Model, the V proceeds down and then up, from left
to right depicting the basic sequence of development and
testing activities. The model highlights the existence of
different levels of testing and depicts the way each relates

to a different development phase. Like any model, the V-
Model has detractors and arguably has deficiencies and
alternatives but it clearly illustrates that testing can and
should start at the very beginning of the project. In the
requirements gathering stage the business requirements
can verify and validate the business case used to justify the
project. The business requirements are also used to guide
the user acceptance testing. The model illustrates how
each subsequent phase should verify and validate work
done in the previous phase, and how work done during
development is used to guide the individual testing phases.
This interconnectedness lets us identify important errors,
omissions, and other problems before they can do serious
harm. On the development side, development cycle is
started by defining business requirements. These
requirements are then translated into high- and low-level
designs, and finally implemented in program code (a unit).
On the test execution side, unit tests are executed first,
followed by integration, system and acceptance tests.
Below is the brief description of the different test phases.
2.2.2 Unit Test
Starting from the bottom the first test level is ‘Unit
Testing’. Unit tests focus on the types of faults that occur
when writing code, such as boundary value errors in
validating user input. A series of stand-alone tests are
conducted during Unit Testing. Each test examines an
individual component that is new or has been modified. A
unit test is also called a module test because it tests the
individual units of code that comprise the application.
Each test validates a single module that, based on the
technical design documents, was built to perform a certain
task with the expectation that it will behave in a specific
way or produce specific results. Unit tests focus on
functionality and reliability, and the entry and exit criteria
can be the same for each module or specific to a particular
module. Unit testing is done in a test environment prior to
system integration. If a defect is discovered during a unit
test, the severity of the defect will dictate whether or not it
will be fixed before the module is approved. The problem
with a unit is that it performs only a small part of the
functionality of a system, and it relies on co-operating with
other parts of the system, which may not have been built
yet.

Fig. 1: Test phases in relation with development phases V-Model

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1264

2.2.3 Integration Testing
Integration testing examines all the components and
modules that are new, changed, affected by a change, or
needed to form a complete system. Where system testing
tries to minimize outside factors, integration testing
requires involvement of other systems and interfaces with
other applications, including those owned by an outside
vendor, external partners, or the customer. Integration tests
focus on low-level design. They check for errors in
interfaces between units and other integrations. As the
components are constructed and tested they are then linked
together to check if they work with each other. It is a quite
possible that the two components that have passed all their
tests, when connect to each other, produce a new
component full of faults. These tests can be done by
specialists, or by the developers.
2.2.4 System Testing
System tests check whether the system as a whole
implements effectively the high-level design. Once the
entire system has been built, it has to be tested against the
"System Specification" to check if it delivers the features
required. System Testing tests all components and
modules that are new, changed, affected by a change, or
needed to form the complete application. The system test
may require involvement of other systems but this should
be minimized as much as possible to reduce the risk of
externally-induced problems. Testing the interaction with
other parts of the complete system comes in Integration
Testing. The emphasis in system testing is validating and
verifying the functional design specification and seeing
how all the modules work together. For example, the
system test for a new web interface that collects user input
for addition to a database doesn’t need to include the
database’s ETL application—processing can stop when
the data is moved to the data staging area if there is one.
System Testing is not about checking the individual parts
of the design, but about checking the system as a whole.
2.2.5 Acceptance Testing
Acceptance tests are ordinarily performed by the
business/users to confirm that the product meets the
business requirements. Acceptance Testing checks the
system against the "Requirements". User Acceptance
Testing is also called Beta testing, application testing, and
end-user testing. Whatever you choose to call it, it’s where
testing moves from the hands of the IT department into
those of the business users. Software vendors often make
extensive use of Beta testing, some more formally than
others, because they can get users to do it for free. The
customer should always do acceptance testing. The
developers should not do this testing. The customer knows
what is required from the system and is the only person
qualified to make that judgment.

2.3 Web Testing
Web applications are based on client-server, request-
response mechanisms. At a high level, Web applications
are usually divided into four basic layers. Layers 3 and 4
are optional and are chosen
Based on product requirements:

1. Presentation layer (client side/user interface)
2. Distribution layer (server side)
3. Business logic layer
4. Back end (database/external dependency)
The general flow of this architecture is as follows: The
client (presentation layer) will request a URL. A Web
server (distribution layer) will receive the request and
carry the preliminary processing. Based on processing, the
Web server will call the business logic layer. The business
logic layer carries out further processing based on
encapsulated business rules. The business logic will also
interact with back-end database applications (persistence
layer) as well as any external applications. The business
logic will return control to the Web server when
processing completes. The Web server will send a
response to the client.
2.3.1 Internet applications
The title of this paper, Validation of Internet Applications,
creates a need to define what we mean with web
applications in this thesis work. The two author’s
classifications of web sites were presented in the above
section. Powell [2], in his classification does not use the
word ‘application’ until a higher degree of interactivity is
offered. Instead he uses the word ‘Site’ for the first,
simpler, categories. For this thesis work, we have
considered web application as any web based site or
application available on Internet or on an Intranet, whether
it is a static promotion site or a highly interactive site for
banking services. However, due to time constraints the
testing is done only on the static website. In this thesis
work, web site and web application have the same
meaning.
2.5 Test types
The previous text describes the general guidelines for
testing, whether it is software applications or web
applications. But the scope of this thesis is testing web
applications. There are different types of tests that are
performed within the different stages throughout the web
testing process. Below text describes briefly the most
common web site/application test types used, with aim on
the medium of the web.
Functionality testing
Functionality testing is one of the most important areas of
testing. It should never be missed. Functionality testing
involves an assessment of every aspect of the site where
scripting or code is involved, from searching for dead
links, to testing forms and scripts. The purpose of this type
of test is to ensure that every function is working
according to the specifications. Functions apply to a
complete system as well as a separated unit.
Browser Compatibility
 There are a number of different browsers and browser
options. A website has to be designed to be compatible for
a majority of the browsers. This still leaves room for
creativity. Even with Microsoft’s Internet Explorer and
Netscape’s Navigator this is an issue because of the
different versions people are or still are using
Performance testing

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1265

Performance testing generally describes the processes of
making the web site/application and its server as efficient
as possible, in terms of download speed, machine resource
usage, and server request handling. In order to identify
bottlenecks, the system or application has to be tested
under various conditions. Varying the number of users and
what the users are doing helps identify weak areas that are
not shown during normal use.
Transaction Testing
This is very critical in an e-business application. The
software a website is utilizing has to be forced to invoke
its various components and whether the direct and indirect
interfaces work correctly. The information entered by the
user should make it to the database in the proper ways.
When the user calls for information contained in the
database, the proper data must be returned
Usability
Usability testing is the process by which the human-
computer interaction characteristics of a system are
measured. The measurement shows the weaknesses, which
leads to correction. To ensure that the product will be
accepted on the market it has to appeal to users. There are
several ways to measure usability and user response.
Compatibility testing
Compatibility testing measures how well pages display on
different clients. For example: browsers, different browser
version, different operating systems, and different
machines. This testing is sometimes also referred as
browser compatibility testing or cross-browser testing.
Security testing
Security testing refers to the testing of the site and web
server configuration with an eye towards eliminating any
security or access loopholes. In order to persuade
customers to use Internet banking services or shop over
the web, security must be high enough. One must feel safe
when posting personal information on a site in order to use
it. Typical areas to test are directory setup, SSL, logins,
firewalls and log files.

3. TTCN
TTCN (Tree and Tabular Combined Notation for TTCN-
2, or Testing and Test Control Notation for TTCN-3) is a
globally adopted standard test notation for the
specification of test cases. A TTCN specified test suite is a
collection of test cases together with all the declarations
and components needed for the test. Its use has grown
considerably since its first launch and it is used in many
fields such as:
• Telecommunication networks
GSM, ISDN, 3GPP/UMTS, TETRA etc.
• Telecommunications systems
Public exchanges, private branch exchanges, terminal
equipment like (mobile) handsets,
Fax machines, PC communications cards
• Telecommunications interfaces/protocols
INAP, ISUP, SS7, ATM, Voice over IP, Wireless LANs
(Hiperlan/2), UMTS/3G etc.)
TTCN was an initiative of ETSI, the European
Telecommunications Standards Institute. It is

Internationally standardized by International Organization
for Standardization (ISO). The first published standard of
TTCN was released in 1992. The language is now
supported by a large variety of sophisticated tools such as
test systems, editors, compilers, syntax checkers and
simulators. TTCN is an abstract language; abstract in the
sense that it is test system independent. This means that a
test suite in TTCN for one application can be used in any
test environment for that application.
3.1 TTCN-2
TTCN-2 is used worldwide to define standards. It is, for
example, often used by ETSI for the definition of
conformance test suites for telecom standards, e.g. GSM,
DECT, ISDN, and TETRA. Most recently, it has been the
language of choice for testing of Bluetooth and UMTS.
Telecom companies developing products use TTCN to test
whether their product will function according to the
standard. TTCN is not only used in standardization work.
The language is very suitable for conformance testing of
real-time and communicating systems. This has led to a
wide usage throughout the telecommunications industry.
TTCN can also be used outside the telecommunications
field, for conformance testing of communicating systems
or protocols. These test suites describe black box tests for
reactive communication protocols and services. It is a
standardized notation which supports the specification of
abstract test suites for protocol conformance testing. An
abstract test suite is a collection of abstract test cases
which contains all the information that is necessary to
specify a test purpose.
3.1.1 Basic Notation
A TTCN test suite consists of following parts:
• Overview Part:
The overview part of a TTCN test suite is like a table of
contents. It provides all information needed for the general
presentation and understanding of the test suite. It states
the test suite name and test architecture, describes the test
suite structure, if any additional documents related to the
test procedure is available, it provides references to them
and includes indexes for the test cases, test steps and
default behavior descriptions.
• Declarations Part:
The declarations part provides definitions and declarations
used in the subsequent parts of the test suite. The
declarations part declares types, test suite operations,
selection expressions, test components, PCOs, ASPs,
PDUs, timers and variables. The constraints part of a
TTCN test suite provides the values of the PDUs and
ASPs to be
• The Dynamic Part
The dynamic part describes the dynamic behavior of the
test processes by test cases, test steps and default behavior
descriptions. A test case is like a complete program, which
has to be executed in order to judge whether a test purpose
is fulfilled or not. Test cases can be structured/divided into
test steps and default behavior descriptions. A test step can
be seen as a procedure definition, which can be called in
test cases.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1266

3.2 TTCN-3
TTCN-3 is the current version of TTCN and has recently
been standardized by ETSI (European Telecommunication
Standards Institute) and by ITU (International
Telecommunication Union). It is a complete redesign and
widens the TTCN application area to different kinds of
testing applied to different technologies in the
telecommunication and IT domain in general. The syntax
of the textual TTCN-3 core notation is like a programming
languages and similar to C++ or Java. No graphical editors
are required for the core notation, but could be used if the
graphical format of TTCN-3 is applied instead. Because
TTCN-3 is a totally new technique, it requires new tool
support. First parsers, compilers, run-time environments
and editors are available [13] and have been used for this
work. With TTCN-3 the existing concepts for test
specifications have been consolidated. Besides
consolidation, TTCN-3 defines new concepts to widen the
scope of applicability of it. TTCN offers the possibility to
produce test cases for telecommunications networks,
systems and interfaces independently of the underlying test
system hardware and software.
3.2.1 Basic Notation
This section presents a brief introduction of TTCN-3
language. Detailed description of the notation can be
found in TTCN-3 standard [4]. The top-level unit of a
TTCN-3 test suite is a module, which can import
definitions from other
Modules. A module consists of a declarations part and a
control part.
module My Module {
import from MyDeclarations;
control {

execute(MyTestCase());
} // end control
} // end module MyModule
The declarations part of a module contains definitions,
e.g., for test components, their communication interfaces
(so called ports), type definitions, test data templates,
functions, and test cases. The control part of a module
calls the test cases and describes the test campaign. The
imported module contains the definition for the test case
MyTestCase, which is performed in the control part with
the execute statement.

4. TOOL DESCRIPTION
This chapter presents the tools (TTCN-2, TTCN-3 & Pure
Test) that were used for this thesis work. Firstly, the
TTCN-2 tool is presented along with brief introduction of
its sub-tools, followed by description of the TTCN-3 tool
set and Pure Test. Finally, a description of other tools is
given.
4.1 TTCN-2 Tools
TTCN Basic is a package that consists of the Ericsson
made SCS (System Certification System)
and the ITEX editor from Telelogic [6]. Since SCS could
be used with any other editor, and could
be bought separately from the ITEX editor, I have chosen
to just describe SCS here.

Here is the basic introduction of different parts of TTCN
test system:
TTCN Editor
TTCN test suites can be written using graphical editors.
There are various editors available in the market but
Ericsson uses ITEX which is most commonly used.
TTCN Launcher
A GUI for launching different tools and test configuration.
It maintains different projects and tools configuration.
 TTCN Manager
It is the main tool for test suite execution. It has a
graphical user interface from which all functions are
accessed. It provides easy access to others tools like
TTCN Editor, TTCN Translator, TTCN Executor and Log
Monitor.
TTCN Translator
It is a compiler which converts the TTCN machine
processable format (.mp) into an internal format
Executable Test Language(ExTeL). Translator can take
multiple TTCN test suites and generates ExTeL files for
each one of them.
TTCN Executor
It executes the ExTeL files produced by translator and
produces log files. During execution, the executor
communicates to Implementation Under Test via the test
port.
Test Port
The responsibility of the test port is to take care of the
communication between the TTCN executor and the
interface towards the Implementation under test.

Fig. 2:TTCN-2 test system

4.2 TTCN-3 Tools
Titan, an internally developed tool by Ericsson, is a
Ericsson wide official tool set for TTCN-3 There are
various other TTCN-3 tool set vendors such as
Here is the basic introduction of different parts of TTCN-3
test system :
TTCN-3/ASN.1 Compiler
Translates TTCN-3 and ASN.1 modules into C++
programs. Each module is converted into one C++ header
and source file.
Base Library
This library is written in C++ and provides important
supplementary functions for the generated code.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1267

Test Port
A test port skeleton is generated by the TTCN-3/ASN.1
compiler. The user can then implement the functionality
required to communicate with the system under test. The
responsibility of the test port is to take care of the
communication between the TTCN-3 Test system and the
system under test. Please see section for more detailed
description on test ports.

5. TEST PORT
As one of the task in this thesis work was to implement a
test port for HTTP protocol for TTCN-3 execution system,
let us look at the concept of test port in detail. The concept
was introduced in the SCS tool and is also adopted by the
TTCN-3 executor(fig.3).
 5.1 Concept
The goal of the TTCN test system is to make it possible to
execute TTCN Test Suites towards any

interface (internal or external) in any system

Fig. 3:Structure of TTCN-3 EXECUTER

Both TTCN-2 and TTCN-3 achieve this goal by including
a possibility of adding new interface adapters to the
system without having any need to change the core
executor. A test port consists of two parts(fig. 4). The first
part is an adaptation to the Tools(SCS Tools/Titan Tools)
which is used when it's linked into the Tools.

Fig. 4: Conceptual view of test port

1. EVALUATION
Based on the criteria described in Chapter 1.1, Test Cases
were written using TTCN-2 and TTCN-3. In the case of
Pure Test, it was just to run the tool against the site under
test. It was seen during the work that any kind of
information/results that Pure Test presented, it was
possible to do the same using TTCN. During the work, the
main concentration was on TTCN-3 test case design as it
was seen that it was possible to design same test cases in
TTCN-2 as in TTCN-3. So in some cases, comparison is
done only between TTCN-3 and Pure Test.
6.1 Accuracy
Tests were run on an Ericsson internal website

a. http://esekant027.epk.ericsson.se/042/
On manual count, the total number of resources in the
above website was 67, out of which 3 were erroneous.
From the Table 1, it can be seen that TTCN-3 tests were
better than Pure Test when compared to the actual manual
count(67 resources with 3 errors). The main reason for it
is the performance of Html Parser. TTCN-3 Html Parser is
more accurate in finding the resources because during the
testing,
some errors were detected and fixed, making it a better
parser as time progressed. One such HTML convention,
which Html Parser in both TTCN and Pure Test was
unable to handle, was a url name containing '&' This
stands for ‘ampersand’ in HTML. While fetching the urls
containing this, the application have to change it to '&'.
Given below are the results of the tests performed on
several other internal websites of Ericsson.

Table 1: Result Comparison of TTCN-3 and Pure Test
b. http://esekant027.epk.ericsson.se/019/(table2)

Table 2: Result Comparison of TTCN-3 and Pure Test

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1268

7. OPTIMIZATION
TTCN-3 HtmlParser is not very optimized as not much
attention was given to it on this aspect. The main goal was
to create a simple parser that could parse html body that
gives back a set of resources in it. Due to time constraint,
not much thought was put on optimizing it. Pure Test
scores on this aspect as it is a proper product which has
evolved during time and thus it is greatly optimized and
robust when compared with the TTCN-3 HtmlParser. A
page of size 50 kB parses in TTCN-3 as quickly as it does
in Pure Test. A test was performed on a web page of size
330 kB. Pure Test took 3-4 seconds to parse the contents
and get the resources
• Speed

If we see the execution time for tested websites (with
smaller html pages), on an average TTCN-3 xecution
takes less time to traverse through the whole website when
compared to Pure Test. But
when testing a website containing big html pages, TTCN-3
test execution goes much slower than Pure Test due to the
factor presented in Optimization section. Pure Test scores
heavily over
TTCN-3 in this aspect.
• User Interface

Pure Test is a well-developed product. It has a very easy
to use graphical user interface which makes it very easy to
configure and operate. TTCN-3 on other hand is like a
programming language in which test cases can be written
using editors. The result of TTCN-3 test cases when
compiled in the Titan tool is an executable program which
runs from a command line with no graphical user
interface. The results are presented in a log file, which has
a textual format. Although the results can be exported to
an excel sheet by writing some external functions using
C++, it is not an easy task for a person with no
programming background. Pure Test provides the results
in graphs and structures, which are easy to understand and
maintain.
• Cost

License fees for TTCN-2 and TTCN-3 tool sets are free of
cost within Ericsson but the other tool vendors around the
world charge hefty amount of money for annual licenses.
Another cost related to these technologies is that if the
project members do not have the knowledge of TTCN, it
costs the company money and time to bring the workers to
appropriate competence level. These are huge drawbacks
when compared to Pure Test (or for that matter many
proprietary software’s). Pure Test is free software and
being a simple application with a user-friendly interface, it
is easy to configure and run thus saving the huge lead-time
for the testing work.

7.1 Comparing TTCN-3 to TTCN-2
Having developed a test suite for the GIOP protocol in
TTCN-3, TTCN-3 met the expectation of being directly
and easily applicable for testing of message based systems.
In particular, TTCN-3 showed several distinct advantages
over TTCN-2. In another study, TTCN-3 has also been

shown to be effective for the testing of operation-based
interfaces, components and applications [9].
The advantages of using TTCN-3 for defining a GIOP test
suite have been firstly in the easy use of the textual core
notation of TTCN-3. For editing the abstract test suite, the
GNU Emacs with a special TTCN-3 mode [18] has been
used. That helped to develop the ATS in an integrated
manner with traversing, syntax and semantics checking,
and code generation capabilities efficiently. In addition,
the test specification can be developed and is readable in
every text editor without having the need for cost-intensive
development environments. The syntax of TTCN-3
showed to be suitable to specify GIOP messages relatively
fast and well readable. In the ongoing work, tests for the
client side of ORBs will be developed. With the module
and import concepts of TTCN-3, significant parts of the
existing test suite can be reused to specify and implement
the additional tests. Even, the two test suites can be
combined into one so that the test suite user has to perform
only one set of test cases. Technically however, two
different types of main test components will be used in
that integrated test suite to reflect the different
configurations of client and server side tests. An integrated
test suite will be more practical and comfortable. By
means of two external functions to start the CORBA client
and to stop it after test execution, which are used in the
control part, the tests can control that CORBA client
automatically. Beyond the concrete technical advantages
of TTCN-3 for the GIOP tests, there are further ones. In
practice TTCN-3, requires less code than TTCN-2 to
express the same test behavior.

8. CONCLUSION
With the experience gained in the three technologies
during this thesis work, it can be said that the best
technology for testing Internet Application is Pure Test. It
has several advantages over the other two technologies.
Some of the advantages are cost benefits, graphical user
interface, fast parsing and robustness scores over the other
two technologies. Of the other two technologies, TTCN-3
is certainly better than TTCN-2 as it has features like C++,
Perl integration, regular expressions engine, closeness to
programming languages making it easier to write complex
test cases etc. This technology is still evolving and tool
vendors are, and will be adding add-on features helping
the technology to grow more. TTCN-2 is an industry
proven technology for conformance, function testing etc.
but it can be said that it is not as flexible as TTCN-3 for
Internet Application testing. However, it was wonderful to
see that TTCN-2 language and the tool set had ways
(although not the very best or optimized) through which it
was possible to make test scenarios similar to TTCN-3.

REFERNCES
[1]. John Clark and Jeremy Jacob. A survey of

authentication protocol literature : Version 1.0.,
November 1997http://www-
users.cs.york.ac.uk/jac/papers/drareview.ps.gz

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1261-1269 (2012)

1269

[2]. Powell, Thomas A., Web Site Development, Beyond
Web Page Design, 1998; Prentice Halls; ISBN 0-136-
50920-7

[3]. Catherine Meadows: Formal Verification of
Cryptographic Protocols: A Survey. ASIACRYPT
1994 Survey in Formal Analysis of Security
Properties of Cryptographic Protocols, Tarigan 2002

[4]. D. Dolev, A. Yao, On the Security of Public Key
Protocols, IEEE Trans. on Information Theory, 1983

[5]. Michael Burrows, Martin Abadi, and Roger
Needham. Logic of authentication. Technical Report
39, Digital Systems Research Centre, February 1989
Protocol Verification by the Inductive Method,

[6]. Abadi/Gordon, 1998 [AR00] Reconciling two Views
of cryptography (The Computational Soundness of
Formal Encryption), Abadi/Rogaway, 2000 [AD94]
A Theory of Timed Automata,

[7]. Alur/Dill, Theoretical Computer Science, 1994 [AJ04]
Three Tools for Model-Checking Security Protocols,

[8]. Luca Vigano’, Electronic Notes in Theoretical
Computer Science, 2006 [AVISPA]

[9]. D. Oppenheimer et al., .Why do Internet Services Fail,
and What Can Be Done About It. in USITS, 2003.

[10]. D. A. Patterson et al., .ROC: Motivation, Definition,
Techniques, and Case Studies, UC, Berkeley, Tech.
Rep. UCB//CSD-02-1175, Mar. 2002.

[11]. J. Gray, .Why does Computers Stop and What Can Be
Done About It? in SRDS, 1986.

[12]. B. Murphy and B. Levidow, .Windows 2000
Dependability, Microsoft Research, Tech. Rep. MSR-
TR-2000-56, June 2000.

[13]. F. Oliveira et al., understanding and Validating
Database System Administration, in USENIX, 2006.

[14]. K. Nagaraja et al., understanding and Dealing with
Operator Mistakes in Internet Services, in OSDI,
2004.[7] Rice University, .DynaServer Project,.
http://www.cs.rice.edu/CS/Systems/DynaServer,
2003.

[15]. P. Anderson et al., .Smart Frog Meets LCFG:
Autonomous Reconfiguration with Central Policy
Control, in LISA, 2003.

[16]. Y.-Y. Su et al., .Auto Bash: Improving Configuration
Management with Operating System Causality
Analysis, in SOSP, 2007.

[17]. W. Zheng et al., .Automatic Configuration of Internet
Services, In EuroSys, 2007.

[18]. A. Whitaker et al., .Configuration Debugging as
Search: Finding the Needle in the Haystack, in OSDI,
2004.

[19]. M. K. Aguilera et al., .Performance Debugging for
Distributed Systems of Black Boxes, in SOSP, 2003.

[20]. P. Barham et al., .Magpie: Real-Time Modeling and
Performance-Aware Systems, in HotOS IX, 2003.

